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System of Magnetic Particles in an External 
Magnetic Field: Surface and Bulk Structure 
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A system of particles with spin interaction in an external magnetic field is 
studied using a general formalism applicable to the solid, liquid, or glassy state. 
Explicit results are given in the mean spherical, LOGA, and EXP approxima- 
tions. The Laplace transform of the wall-particle correlation function near a 
surface is obtained. From it, analytical expressions for the orientational density 
profile are derived and used to calculate the magnetization and magnetic 
susceptibility in the bulk. Magnetostriction is also discussed. 

KEY WORDS: Amorphous magnetic material; magnetic liquid; solid-fluid 
interface; wall-particle distribution function. 

1. INTRODUCTION 

In an earlier paper (1) a general formalism was sketched that can be applied 
to the computation of the structure of a classical statistical-mechanical 
system at equilibrium in the presence of a wall and/or  other external-field 
source. Here we apply that formalism to the computation of the one- 
particle distribution function and the magnetic susceptibility of a system of 
magnetically active particles with an interparticle spin interaction of either 
Ising or classical Heisenberg symmetry. (The level of approximation upon 
which we obtain explicit analytic results in this paper is insensitive to the 
difference between the Ising and Heisenberg cases, since it yields spherical- 
model-like results that are independent of spin dimensionality. As Hoye 
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and Stell have argued, (2) one expects these results to be exact in the limit of 
infinite spin dimensionality.) 

Because of the generality of our model, our results are not restricted to 
a particular phase-solid, glassy, liquid, or gaseous. Indeed, in principle 
they offer a systematic means of determining the phase in which one will 
find a system defined by a particular set of parameters (density, tempera- 
ture, external field, interaction strength), although we do not attempt such 
determinations in this paper and the adequacy of the particular approxima- 
tions treated herein remains to be determined in this regard. 

Our general formalism is derived for systems in thermal equilibrium, 
and therefore is most obviously appropriate to the treatment of annealed 
rather than quenched systems. As discussed in some detail in Ref. 3, 
however, the results we obtain in the mean-spherical approximation (MSA) 
and lowest-order gamma-ordered approximation (LOGA) are probably just 
as relevant to quenched as to annealed systems. (In a solid that has been 
quenched the translational and orientational correlations are completely 
decoupled, a situation exactly described by the aforementioned approxima- 
tions. (2'3)) 

In Ref. 2 Hoye and Stell already discussed the bulk field-free proper- 
ties in the MSA and LOGA of the model we consider here and established 
in those approximations the existence and location of a Curie point in the 
ferromagnetic case. In Section 2 of this paper we extend that work to 
consider the one-particle distribution function in a constant magnetic field 
in the vicinity of a smooth surface. In Section 3 we consider the spin 
orientation distribution function away from a wall as a function of field 
strength and use it to obtain the relationship between magnetization and 
field strength. We note the way in which our results manifest magnetostric- 
tion effects and reduce to those of Langevin in the paramagnetic limit of 
weak spin interaction between particles. 

The model and approximations we use here complement the usual 
lattice-model approach to magnetic systems, which has been fine tuned 
over the past few decades to successfully capture the subtle and special 
cooperative behavior that comes into its own in the critical region. With our 
model, much more sophisticated approximations than those we discuss in 
this paper will be necessary to faithfully capture the nuances of critical 
behavior. Even to obtain the classical mean-field H cc M 3 behavior of the 
critical isotherm requires going a bit beyond the approximations we con- 
sider here [presumably, to the level of a quadratic hypernetted chain 
(QHNC) approximation]. 

On the other hand, certain features of magnetic systems that are either 
totally absent in the usual lattice-model approach (or are present only after 
being built in rather laboriously) can be easily studied in our particle 
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model, which reveals its considerable richness of structure even in the 
rather simple approximations we use in this preliminary work. It is struc- 
ture on precisely the scale of distance--the interparticle distance--that is 
typically neglected in the critical region, where it becomes too small 
compared to the correlation length to be important. One example of this 
structure is the way spin ordering in a field changes on the scale of 
interparticle distance as one leaves the bulk and approaches a smooth wall. 
Another is the phenomenon of magnetostriction, which is absent by defini- 
tion in the usual rigid lattice-model treatments of magnetism. In this paper 
we consider briefly the simplest manifestation of magnetostriction; namely, 
the change in overall volume of an isotropic homogeneous element of 
magnetic material (such as an amorphous sample in thermal equilibrium, or 
a magnetic fluid). 

2. THE WALL-PARTICLE ORIENTATIONAL CORRELATION 
FUNCTION IN THE PRESENCE OF A MAGNETIC FIELD 

We consider magnetically active particles interacting with a pair poten- 
tial (2) between particles 1 and 2 of species i a n d j  given by 

= f Uo,ij(r), r < R O. 
uij(12) (2.1) 

Uo, O. - J(/j)DA(12), r > R,j 

where r is the distance between the particle centers, Uo, O. is a nonmagnetic 
short-range interaction, D is spin dimensionality (3 or 1 for Heisenberg and 
Ising interactions, respectively), A(12) is Sl " s~ with s*/a unit spin vector, and 
Rij is a diameter inside of which only the nonmagnetic Uo,ij is felt. (For u0,iy 
we have in mind as model potentials, e.g., a hard-sphere interaction of 
diameter Ry or a Lennard-Jones interaction with ooLS= R~j.) In this paper 
J(/ j)  is chosen to be a Yukawa potential: 

J ( / j )  = ~ e -%(~-R0) (2.2) 
r 

although we can readily generalize our work to a sum of Yukawas with 
different K/j and %..(3,4) When K/j > 0, Eq. (2.2) represents a ferromagnet 
while for K~j < 0 it represents an antiferromagnet. Adding nonmagnetic 
species interacting with each other (and with the magnetic particles) with a 
nonmagnetic potential u0,/j(rl2 ) leaves the mathematics of our procedure 
essentially unchanged; the system then serves as a model for alloys. 

The Ornstein-Zernike (OZ) equation for a mixture of particles of 
species l = 1 . . . . .  o has the form 

h,j(12) = c0.(12 ) + & cil(13)h~(32) a 
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where h0.(12 ) and c0(12 ) denote the total and direct correlation functions, 
respectively, and d(i) means an integration over position r i and orientation 
f~i of particle i, with normalization such that fd~2 i = f~. 

In the MSA we can represent h0.(12 ) and eg(12) by a truncated 
expansion of the form (2) 

h~j(12) = hoS(r ) + h~(r)DA(12) 
(2.4) 

cy(12) = coS(r ) + c~(r)DA(12) 

where hS(r) and cS(r) are the spherical symmetric parts of the total and 
direct correlation functions, respectively, and the second term represents 
the orientational parts of those functions. Introducing these expressions 
into the OZ relation, one obtains two decoupled equations for the spherical 
and the orientational parts of hg(12) and c~(12): 

g 

hoS.(r)=cS(r)+ ~ O , f c i S ( [ r - r ' l ) h ~ ( r ' ) d r  ' (2.5a) 

h~(r) = e~(r) + ~ O t f  c~( l r - r ' [ )h~j (r ' )d f  (2.5b) 
l 

[The truncation Eq. (2.4) and the decoupling of translational and orienta- 
tional correlations appropriate to the MSA are not valid in an arbitrary 
approximation, we should note.] The MSA closure for the OZ relations 
(suitably generalized (~) from its original hard-core formulation to encore- 
pass soft-core potentials) is given by 

hS(r)  = h0S, g(r), r < Rg 

coS(r ) = - flUo,o(r ), r > Rij 

and 

h~(r) = O, r < Rij 

e~(r) = flJ(12), r > R O. 

(2.6) 

(2.7) 

These equations can be transformed to treat the situation in which a fluid is 
in the presence of a magnetic field coming out of the wall. If we label one 
of the species w (for "wall") and take limpw--->0, limRws--~ oo with OwRw 3 

0, Eq. (2.5) with the closure (2.6)-(2.7) describes a system of particles 
interacting with pair potential uij(r) in the simultaneous presence of a field 
and a wall. Such equations have already been solved by us and by others 
for the case of polar particles in the MSA and related approximations. (5) 
Taking the same limit here [and suitably scaling the J(w, i) to increase 
appropriately as R~s does] allows one to study the correlations in the 
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presence of a magnetic field. In the above limit Eq. (2.5b) becomes 

hi ( z  ) = c~(z) + 2r;pl ~ at tc~(t)Jz_ ' dsh~(s) (2.8) 

where z is the perpendicular distance of a particle from the wall, the 
subscript 0 denotes a wall-particle correlation function, c~(t) is the bulk 
direct correlation function (which is considered known), and P] is the fluid 
density. Here we have restricted ourselves to the case of a one-component 
magnetic system of species 1 in the presence of species 2 that, in the limit, 
becomes the wall and field source. To transform closures (2.7), we intro- 
duce the wall and particle diameters R w and R such that Rwl = (R w + R ) / 2  
and take r--~ �89 R w + z, Kwl--> ~ ,  Pv,--> ~ such that Kwl/  R ~ is finite. We 
note from Eqs. (2.1) and (2.2) that the orientational part of the potential in 
the limit R w --> ~ becomes (with a = a]2 ) 

lim u,2(z,~w,f~,) = -p~(f~] ) .  He -~z-R/2) (2.9) 
Rw---> or 

where the magnetic field generated in this limit is given by 
A 

DKwlH 

Here /1  = S(~w) is a unit vector in the direction of the spin associated with 
the "particle" that has become a wall and /z is the magnetic moment 
associated with the spin ~(~). Then the closures can be written as 

h~(z) = O, z < R / 2  
(2.10) 

c0a(z) = ~-.I*Ho-~(~-R/2), z >  R / 2  

where H is the magnitude of the magnetic field, which is coming out of the 
wall in a fixed arbitrary direction given by g(f~w). Using Baxter factoriza- 
tion (6) 

1 - p , ~ ( k )  = Q.(k) O r ( -  k) 

where ~ ( k )  is the Fourier transform (FT) of c~(r) and 

O T(k) = 1 - 2~rP,foo ~ dre'k'Q(r) 

(2.11) 

(2.12) 

is the FT of the factor correlation function Q(r), we can write Eq. (2.8) for 
z > R / 2  as (1) 

h ~ ( z ) - 2 ~ r p l f  ~ d rh~o( z - r )Q(r )  = -~--~ f'_ dk~(k ){  Q T ( - k ) )  leik~ 

(2.13) 
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In the MSA ~,(k) is the FT of the wall-particle potential + fiUlw(Z), i.e., 
~(k) = figlw(k) and the right-hand side of Eq. (2.13) becomes 

iRes[ f i~lw(k){ O r (  - k) ) - le ikz  ] (2.14) 
[ k = g  m 

where z m are the poles of fl~lw(k) in the lower half complex plane. Since 

2 / 2  fll~H eikR/2 g(k)  = dzeikze?(z) - k + ia (2.15) 

the expression (2.14) has a pole at k = - i a .  Hoye and Blum (7`s} have 
obtained O(r) in the MSA for a system interacting with a Yukawa potential 
or a sum of Yukawas. In the former case the result is (7) (with q = all ) 

Q(r)  = Qo(r) + de -qr, r > 0 (2.16a) 

Oo(r) = O, r > R 

= c(e -qr -- e-qR),  r < R (2.16b) 

with c and d related by the equations 

ilK11 e qR 
d =  

qQr( iq )  

2 ~r O 1 dcqe - 2qR 
q(c + d)  = 2qOr( iq )  (2.17) 

where QT(iq) can be calculated from Eq. (2.12). Thus Q(k) and 0T( - k) 
are known functions and one can evaluate the residue Eq. (2.14). Then Eq. 
(2.13) becomes 

~H e-a(z-R/2) 
h~(z) - 2qrp,s  drh~(z  - r )Q(r)  - k T  O r ( i a )  (2.18) 

with 

Qr(ia)  = 1 -  2qrplc [ ~ q ( e  - (~+q)R-  1)+ e-q--'---~R(e-C~R--ot 1) 1 

27rpld 
(2.19) q + a  

The Laplace transform of Eq. (2.19) yields 

t~o(S ) _ ~tH e-SR/2 1 (2.20) 
k ~  s + a  QT( ia )OT( i s )  

where Q T(is) has the same functional form as Q T(ia). When a ~ 0, the 
magnetic field decays exponentially with the distance from the wall. When 
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a = 0, H is constant and we can study the correlation function in the bulk 
infinitely far away from the wall. Thus, when a = 0, 

* I~H e-sR/2 1 
h ~ ( s ) -  kT  s 0 T(O) 0 T(is) (2.21) 

The inverse transform of this formula provides a means of studying the 
orientational correlation function and the magnetic properties of a mag- 
netic system in the presence of a constant magnetic field at any distance 
from a smooth wall. 

One useful representation of h~(z) is a zonal representation obtained 
from the inversion of L(s) = e-SR/Z/sOT(is). We have 

I~HL(s) 
h'~(s) - kTQ_ T(O) (2.22) 

From (2.19) we can write 

Q T ( i s ) = I - - e - R ~ [  s(qA+s) +B(s)e~R 1 (2.23a) 

where 

A = 2qrPlCe-qR q (2.23b) 

2~rPlS(e -- d) q- 2~rp,ce-qR(q + s) 
B(s) = - s(q + s) (2.23c) 

It follows that 

E 0T(;,)I ,=2o(e A s(q + s) 

Then, 
i 

n 

+B(s )e  sR ( - 1 ) "  (2.24) 

_ ( _  1)n(e-sR)n A .=1  + + B( )eSR 

OO = e-SR/2 ~a An-l (q  + s)e-(n-1)s 
.=1 { s ( q +  s)[1 + B(s ) ]}"  (2.25) 

The equation E(s) = O, where 

E(s) = s 2 + s[ q + 2~r&ce -qR - 2~rp,(c - d) ]  + 2~rplee-qRq (2.26) 

gives the poles of each term of (2.25). As in Smith and Henderson, (9) we 
can write 

L(z)  = Inv [L( s ) ]  = k g * ( z -  n + 1)0(z - n + 1) (2.27) 
n = l  
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where O(x) = 1 for x > 0 and 0 for x < 0 and 

1 ' d~-] [ ( t - t i ) ~ A ~ - l ( q + O ]  
g* (x ) -  (n -1)!  ,__~0 l i m . =  t~t~ di "-1 E(t) e t(x-R/2) (2.28) 

where t~ are the roots of E(t). One can proceed following Henderson and 
Smith (1~ and convert g*(x) to the form 

1 n - I  

g*(x) ~] expti(x - R/2) ~a (x n - - r - - 1  i = -- R / 2 )  ~nr (2.29) 
i = 0  r = 0  

with 

where 

r 
~ir  : ( n  --r 1)s=~0= (rS)(~n,r_s(ti)~n,s(ti) 

~.,k(t) =IA(q + t)] (k) 

~n,k(t)= {[ (t--ti) 

and the superscript (k) denotes the kth derivative. 

(2.30a) 

(2.306) 

(2.30c) 

3. BULK MAGNETIC PROPERTIES 

In this section we study Eq. (2.21) in the limit z ~ ~ when wall effects 
are not present. More precisely, we consider Eq. (2.5b) in the limits 
R w ~ oo, then z ~ oo (in that order). In this case the inverse transformation 
of Eq. (2.21) can be made very easily. We obtain then 

~(fl).  H 1 (3.1) 
h~(H)g(fl) '/t0 = g kT [ 0T(0)l 2 

This function is independent of position and enables us to calculate the 
one-particle orientational density function pOR(fl, H), which in the MSA is 
given by 

--ffP][ /~T--ff~'H] (3.2) pOR(~, H) = ~- 
u ~ J \  J J 

where 

F = [  Qr(0)]2= I 1 -  p,Y~(0)] = [1  + p,ff~(0)l- '  (3.3) 

From its definition (2) the LOGA result for pOR is the same as that given by 
Eqs. (3.2) and (3.3) but with F associated with the exact spherically 
symmetric short-range correlation function rather than the approximation 
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to it. In the classical Heisenberg case, in which spin orientation is continu- 
ous in 3-space, magnetization M is given by 

M = #fpOR(a, H)cos ~, dv (3.4) 

where cos ~ is the angle between the magnetic field and the spin of a given 
particle in the fluid. Substituting Eq. (3.2) in Eq. (3.4), we obtain 

/zaplH 
M -  3kTF (3.5) 

both for the MSA and the LOGA. This result is equally appropriate for 
liquid, solid, and glassy systems on the level of approximation upon which 
we work. In particular, the LOGA should give a good representation of 
quenched alloys. From Eq. (3.5) 

M / H  = flt~2Ol/3F 
or equivalently in the Heisenberg case 

[ 1 - Ol~(0)] - '  = 3M/fll~2olH (3.6) 

The left-hand-side of this equation can be identified with the differential 
isothermal susceptibility X = 3M/OH in the limit H--~0 according to the 
relation 

[1 - p ,e~(0) ]  -1 - -  1 + IOIs = Dx/fl~21o I (3.7) 

which is the magnetic analog of the well-known compressibility equation 
relating ys(0) and isothermal compressibility Op/Oo. Above the Curie 
temperature, isotherms in the H - M  plane can be expected to approach the 
origin linearly, so that 

lim X = M / H  (3.8) 
H--~0 

Comparing (3.6) and (3.7), using (3.8), we find consistency in the low-field 
limit, H-~0.  In the MSA and LOGA, which rest on Eq. (2.1) and thus are 
fundamentally linear theories in the field, the linear regime is all we can 
hope to treat faithfully. Hoye and Stell (1) found that these approximations 
do predict a Curie point 4 at which 1 -pleA(0)= 0 for the ferromagnetic 
case  ( K l l ) 0 ) .  Below the Curie temperature these approximations are not 
useful. When KII < 0 (the antiferromagnetic case) no orientational transi- 
tion is found. We note that if the magnetic interaction is described by a 
magnetic dipole-dipole potential, no orientational transition is found in 
these theories either. (12) 

4 This has been predicted by other researchers using different approximation techniques. See, 
e.g., Ref. 11. 
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To go beyond the linearity of the MSA and LOGA, we can consider 
the relevant extension (0 of the EXP approximation (~3) to the problem at 
hand. This approximation is accurate for arbitrary field strength to lowest 
order in density. Its one-particle density function in the limit under consid- 
eration is 

pEXP(f~, H) = -~- exp_ k T F  ] (3.9) 

which gives for the magnetization 

M = # o L ( n )  (3.10) 

with 7/= I ~ H / k T F  and L(~/) is the Langevin function co th~ / -  1/7.  In 
(3.10) p is the density established after the field H is turned on. When 
~/-~ ~ (from either H ~  ~ or F o 0 ) ,  L 0 1 ) ~  1 and M =/~p, i.e,, complete 
saturation is obtained. When no correlations between spin particles are 
present, F = 1 and the classical Langevin result is recovered. At T = T~, 
F = 0 so that for any H = 0, ~/~ ~ and M = pp. This indicates that the 
critical isotherm in the H - M  plane defined by F = 0 is of zero curvature; a 
more sophisticated approximation is needed to get a realistically shaped 
isotherm. 

The fact that the density which appears in Eq. (3.10) differs from the 
density Pl (the density in the absence of the magnetic field) is due to 
magnetostriction. The MSA or LOGA do not predict this effect. The EXP 
does, giving 

f sinh ~/ (3.11) O = 0EXP(~,H) d ~ =  Pl ~/ 

Expanding O to order H z we find, as a measure of magnetostriction 

A p _  1 ( / x H )  2 (3.12) 
Pl 6 

where AO = 1 9 -  O~- We can compare this formula to a thermodynamic 
formula exact through O(H2)(14) : 

AP-- 1 ( a X----~-L ) H2 (3.13) 
Pl ~ ~Pl T,g Q 

where g is chemical potential, Q = ~ / p l ~ r ,  x r is the zero-field isothermal 
compressibility, and X L is the "linear" susceptibility M / H  in the limit 
H---~ 0, which can be identified with the differential susceptibility X in this 
limit. 

Equation (3.12) is exactly compatible with (3.13) only for an ideal-gas 
xT = fl/PL ( Q  = 1) and an ideal-gas susceptibility given by X L = fit~2pl/3. 
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The compar ison between (3.12) and (3.13) shows that  the EXP result is 
likely to be useful only for magnet ic  fluids of rather low density, i.e., 
magnetic  gases, in strong fields. Very recently, electrostriction has been 
studied using the quadrat ic  hypernet ted chain approximat ion (QHNC).  (15) 
The techniques used in that computa t ion  are fully analogous to those 
necessary in the computa t ion  of magnetostrict ion,  and we refer the reader 
to that work (15) for computa t ional  details. The magnetostr ict ion result is 

ApQHNCpI -- 61 ~[ /~H ]2 1 (3.14) 
}-T-ff ] O 

This is a considerable improvement  over the EXP result, a l though it too is 
exactly consistent with (3.13) only for F = 1, which is compatible  with the 
ideal susceptibility X L =  f l#201/3 .  The most  useful of these expressions is 
(3.13), into which X L and  Q obtained f rom the field-free properties of any 
one of the approximat ions  considered here can be inserted. The X c and  Q 
f rom the M S A  are particularly convenient  for this purpose, since they have 
a relatively simple analytic structure as discussed in Ref. 2. 
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